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I. INTRODUCTION

For about the past six years, high-current betatrons of various

designs have been the subject of experimental and theoretical investiga-

tions. This interest stems from the potential for compact, high-power beam

generation which these machines offer.

To operate a high-current betatron successfully, one must be able to

inject the beam onto a closed, recirculating orbit, and maintain beam

stability for the duration of the acceleration cycle. The latter may vary

from tens of microseconds to several milliseconds. Depending on the appli-

cation, it may then be necessary to extract the beam from the device.

During the period of our contract with the Office of Naval Research

(01 November 1983 - 31 March 1987), we have concentrated on the question of

beam behavior after injection, because this behavior determines such key

parameters as the maximum operating current, and the length of the acceler-

ation cycle. During the period 01 November 1983 - 31 December 1984, we

developed the analytic and computational tools to study the equilibrium and

stability of the circulating electron ring. This work was described in

detail in Ref. 1, and will be referred to as needed. In the period

01 January 1985 - 31 March 1987, which is covered in this report, our

emphasis was on applying these methods to experimental machines currently

in operation.

The experiments for which we have performed specific calculations are

the Modified Betatron Accelerator at the Naval Research Laboratory [2], the

Stellatron at UC Irvine [3], and the Solenoidal Lens Betatron at the

University of New Mexico [4]. This report is organized into three main

sections describing the results for each of these devices. Publications,

Conference Proceedings and Presentations, and Technical Reports written

during this contract are listed in Appendix D.
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II. MODIFIED BETATRON ACCELERATOR

1. NEGATIVE-MASS INSTABILITY ON A COLD BEAM

The modified betatron adds a toroidal magnetic field to the conven-

tional betatron configuration. In this way, the space-charge limit on the

confinable current is considerably increased. The most important collec-

tive instability for this device is the negative-mass instability, which

causes toroidal clumping and transverse kinking of the beam. In Ref. 1, we

derived a dispersion relation for this instability which agrees accurately

with cold-beam numerical simulations. In Fig. 1, this dispersion relation

is applied to the parameters of the modified betatron at NRL. The present

status of this machine is that a 1 kA, 0.8 MeV beam has been successfully

trapped in the combined vertical and toroidal magnetic fields for periods

up to 10 usec. During this time, the beam executes on the order of 500

major revolutions. The observed stability is in agreement with the predic-

tion of Fig. 1. Due to space-charge depression of the injected beam

energy, the actual value of the relativistic factor y for the circulating

ring is about 1.6 [5]. This puts the beam below the "negative-mass

transition energy", which is given by

(R21/3

- (1)

where v is Budker's parameter, R is the major radius, and a is the torus

minor radius. This gives yt a 2.1 for a 1 kA beam, in agreement with

Fig. 1. In the absence of stabilizing measures, the beam will become

unstable above this energy. The peak growth for the L - 1 instability

occurs around y = 4, and the mode would become n6nlinear in a time on the

order of 1 usec. We have not simulated the nonlinear development of the

negative-mass instability for a 1 kA beam. For 10 kA beams, our simula-

tions show strong kinking of the beam at low energies leading to considera-

ble current loss (see Fig. 4a below, and Ref. 6).

2_AhL
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Figure 1. Growth rates of the negative-mass instability for parameters
typical of the NRL betatron.
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2. EFFECT OF SPREAD IN CIRCULATION FREQUENCIES

One proposal to reduce or eliminate the negative-mass instability

involves a spread in particle circulation frequencies [7]. Some spread in

circulation frequencies is always present due to finite beam radius, but

since the beam rotates poloidally [8], the frequency spread is only of

order (rb/R)2, where rb is the beam radius. For a given beam radius, one

obtains maximum frequency spread when the beam particles do not oscillate

transversely, as discussed in Ref. 1. One can achieve this by introducing

an energy spread on the beam, or by making the poloidal rotation frequency

small enough. The latter occurs naturally near the so-called diamagnetic-

paramagnetic transition energy, where the poloidal rotation changes direc-

tion [8].

For the low-current conventional betatron, it is possible to derive

analytically the effect of a spread in circulation frequencies. For the

case of a beam with a uniform current density profile, one finds [see

Appendix C, Eqs. (34)-(38)] that the growth rate goes to zero for a beam

radius such that

Ir b R~c > r o (2)

where r0 is the growth rate for a cold beam and f is the toroidal mode

number. If the beam has a finite poloidal rotation frequency wpol, then

one can argue heuristically that Eq. (2) is still the condition for sta-

bility provided, that, in addition

Ir 
b

C 3b (3)TI pollI
R i

This extra condition ensures that a disk of particles initially at one

toroidal location will become smeared out over several wavelengths during

one poloidal rotation period.

*F 4
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We have performed numerical simulations to test the applicability of

Eqs. (2) and (3) to the modified betatron, for which we have not attempted

a rigorous derivation of these criteria. We looked at cases in which the

beam current and energy are kept fixed, but where the poloidal rotation

frequency of the beam is varied. This is accomplished by changing the beam

radius. The two sides of Eq. (3) are plotted versus beam radius in Fig. 2

for a 10 kA, y = 12 beam. For a beam radius of 2 cm, Eq. (3) is strongly

violated for low t modes (we have chosen Z = 4 for this example). Thermal

effects are therefore expected to be negligible. This is indeed what we

find in the simulation. As shown in Fig. 3a, the instability grows at the

predicted cold growth rate. A particle plot made near the end of the

linear growth is shown in Fig. 4a. Nine disks of particles are used to

resolve one wavelength of the instability. Initially, these disks have

zero thickness, but a spread in circulation frequencies causes them to

smear out toroidally. Consistent with the observed cold beam growth rate,

the disks in Fig. 4a show little spreading. Soon after the stage in

Fig. 4a, about 3/4 of the current is lost to the walls. Parenthetically,

we remark that this simulation illustrates that the toroidal magnetic field

is a mixed blessing for beam stability. While it cuts the growth rate of

the instability significantly from what one would obtain without it, it

also inhibits the radial motion which tends to saturate the instability by

producing a spread in circulation frequencies. Note that the distortion of

the beam in Fig. 4a is primarily in the z direction, and so does not

contribute to stability.

In contrast to the case just discussed, Eq. (3) is well satisfied when

the beam radius is increased to 3.5 cm, so that the poloidal rotation may

be effectively ignored (see Fig. 2). Substituting the cold beam growth

rate into Eq. (2), we find that marginal stability is predicted. In a

simulation for this beam radius, however, we see a finite growth rate of

about half the cold growth rate, as shown in Fig. 3b. Thus, Eq. (2) some-

what underestimates the beam radius required for stability in the modified

betatron. The instability causes the beam to distort is a manner similar

to the small-radius case, as shown in Fig. 4b. However, the instability

C5
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Figure 2. Plot of the two sides of Eq. (3) for a 10 kA, y = 12 beam.
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saturates at a much lower level for the larger beam radius. This leads us

to believe that the beam is close to marginal stability initially, and that

the small energy spread created by the instability is sufficient to

stabilize it without loss of current.

We have run a similar series of cases for the I = 20 mode. These runs

illustrate again the importance of satisfying Eq. (3) in order to get the

full benefit of finite beam radius stabilization. For a 1.7 cm beam

radius, we see from Fig. 2 that Eq. (3) is not satisfied for the t = 20

mode. A particle simulation shown in Fig. 5a confirms that the instability

grows at the cold beam growth rate, r0 = 2.9 x 10
- cm"I. Increasing the

beam radius to 2.0 cm puts us in a regime where Eq. (3) is only weakly

satisfied. We observe growth of the instability at roughly half of the

cold value, as shown in Fig. 5b. The wavy energy curve seems to be cha'rac-

teristic of cases where Eq. (3) is weakly satisfied. Note that Eq. (2)

predicts stability for the 2 cm beam (trb/R2 = 4 x 10-3 cm' 1). The non-

linear development is very similar to that of the 1.7 cm beam.

Increasing the beam radius further to 3 cm results in Eq. (3) being

well satisfied, and Eq. (2) becomes satisfied by a factor of two (roc =

2.9 x 10-3 cm 1 ,rb/R 2 = 6 x 10-3 cm 1). In a simulation for this radius,

some erratic growth is seen (Fig. 5b), but not enough to measure a reliable

growth rate. The peak perturbed field energy in Fig. 5b is only 0.2% of

the equilibrium field energy. The beam radius increases slightly, but no

current loss is observed.

Finally, we present some results for parameters closer the the NRL

experiment than the above cases. We performed a simulation of the Z = 20

mode near the peak of the growth curve in Fig. 1 for a 3 kA, y = 7 beam.

The two sides of Eq. (3) are plotted in Fig. 6a. We choose a radius of

2 cm,which is on the order of the experimentally measured value. For this

radius, Eq. (3) is marginally satisfied, and Eq. (2) is satisfied by about

a factor of three (r 0c 1.3 x 10-3 cm"1 , r b/R2 = 4.0 x 10-3 cm-1 ). The

C growth rate observed in the simulation is erratic, and on the order of

9
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3.6 x 10"4 cm"1 , much less than the cold growth rate. If Eq. (3) were
better satisfied, e.g., rb _ 3 cm, the L - 20 mode would likely be

completely stable.

In Fig. 6b, we show the two sides of Eq. (3) for a 1 kA beam in a

2.5 kG toroidal field at an energy of y - 4, which corresponds roughly to

the peak of the 1 kA growth rate curve in Fig. 1. We see that for low

L-numbers, Eq. (3) is not satisfied for rb < 2 cm. We therefore would

expect to see some growth of the negative-mass instability at these mode-

numbers in the NRL experiment. The nonlinear development of the insta-

bility is not known for a 1 kA beam current. Given the large minor radius

of the drift-tube (15 cm), it is possible that the instability may saturate

without loss of current.

3. BEAM STABILITY AT HIGH ENERGIES

A novel prediction of the analytic dispersion relation derived in

Ref. 1 is that the character of the negative mass instability for high L

numbers changes above a certain energy. "High " in this context typically

means X > 12 Il]. A representative growth curve is shown in Fig. 7 (t =

20, I = 10 kA, Be = 1 kG). Above y = 20, the usual nonresonant negative

mass instability gives way to a resonant interaction between the longi-

tudinal and transverse modes of the beam. We performed a number of simula-

tions in this regime to test the analytic predictions. The results, shown

in Fig. 7, are in reasonably good agreement with theory. A common feature

of the simulations for y > 20 is that the beam radius increases in the non-

linear state, but no current loss occurs. The nonlinear state of the beam

in the y - 50 simulation is shown in Fig. 8. A steady state transverse

profile is not reached in the time of the simulation. However, the energy

in the perturbed fields decreases by about a factor of 30 from its peak

value during the nonlinear saturation, as the bunches of charge become

smeared out. The relative ease with which the modes stabilize nonlinearly

can be attributed in part to their relatively low growth rates, and to the

fact that little transverse kinking of the beam is produced by the

12
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instability, unlike the negative-mass instability. This is discussed

further below.

For the simulations at y a 35 and 50, the two sides of Eq. (3) are

comparable in magnitude, so that it is difficult to predict how much

damping from circulation frequency spread is present in the simulations.

If Eq. (3) were well satisfied, then Eq. (2) would predict stability for

each of the simulations for y > 20. Based on the results in Figs. 4b and

5b, it is perhaps surprising that there is not a larger discrepancy between

the cold beam growth rates and the simulation results.

For the simulation at y = 20, Eq. (3) is reasonably well satisfied, so

that we would certainly have expected the thermal effects to have a more

significant effect than is evident from Fig. 7. Since the shape of the

analytic curve in this region is sensitive to small changes in the beam

energy, we also performed simulations at y = 19.7, and y = 20.5, but

obtained the same growth rate as for y = 20, namely, r0 = 1.1 x 10
- cm"I ,

Next, we sought to decrease whatever thermal effects might be present by

reducing the beam radius from 2 cm to 1 cm. This made the beam rotate

faster in the poloidal direction. The growth curve for this beam at y = 20

is shown in Fig. 9. Note that there are two distinct slopes, giving growth
-13 -1rates of 6.3 x 10-  cm 1 and 1.56 x 10-  cm" .  It is tempting to identify

the lower growth rate with the dip in growth rate at y = 20 in Fig. 7. It

may be that the instability grows at the analytically predicted rate at low

amplitudes, and that a type of mode-locking takes over as the amplitude

gets large. In this light, it may be significant that in each of the 2 cm

beam runs around y - 20 there is a relatively long period (-100 ns) at the

start of the simulations where very little growth is seen. At L = 20, the

resonant denominator in the dispersion relation due to the TE1 1 mode is

starting to have a noticeable effect on the beam behavior, even though we

are not at exact resonance. This is evident from the TE1 1-like structure

of the contour plot of the perturbed magnetic field Be shown in Fig. 10b,

which is taken from the nonlinear stage of the y - 20, rb = 1 cm simula-

tion. It is indeed the proximity of the TE11 mode resonance which is

15
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responsible for the change in the character of the negative-mass insta-

bility referred to above.

For the 1 cm beam case, there is strong longitudinal bunching of the

beam in the nonlinear state, as shown in Fig. lOa. This contrasts with the

2 cm beam runs, where the perturbations saturate at a much lower level. It

also contrasts with the nonlinear development at y = 12, shown in Fig. 4a,

where there is considerable transverse kinking of the beam. Such pro-

nounced transverse kinking is characteristic of the negative-mass insta-

bility. The different nonlinear behavior is evidence that the instability

for y > 20 is not a negative-mass instability. It is possible to have

longitudinal bunching without much transverse kinking since the equilibrium

position of the beam depends on y + *, where * is the electrostatic poten-
tial of the beam; y + * can remain fixed as the beam bunches.

We also ran a 3 cm radius beam at y = 20. Equations (2) and (3)
-4 -1predict stability, but we observe a growth rate of 8.2 x 10- cm" , only

slightly smaller than the 2 cm rate. The mode saturates at approximately

the same level as the 2 cm runs. Finally, we ran a 2 cm beam case where,

instead of a slow E x B mode equilibrium, we ran the beam in the Brillouin

limit. In this limit, the beam is rotating at the Larmor frequency, Se/2 y,

and the particles are given whatever temperature is required to give force

balance. This results in a beam with little spread in particle frequen-

cies. We observe a low initial growth rate of 4.2 x 10-  cm"I , (cf. the

1 cm radius case described above) and the perturbations saturate at an

energy level about an order of magnitude lower than for the slow E x B

equilibrium. A comparable increase in beam radius is observed, however,

whether due to the instability, or to slow (perhaps numerical due to the

fast rotation) changes in the beam equilibrium.

4. RESONANCES IN THE MODIFIED BETATRON AT LOW ENERGIES

In addition to the collective instabilities discussed above, the

modified betatron is prone to single-particle resonances. These occur when
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one of the transverse oscillation frequencies is an integer multiple of the

circulation frequency, wo:

_- L0 W (4)- 0

Errors in the applied magnetic fields then result in transfer of energy

from the longitudinal direction to the transverse direction. The

transverse frequencies are given by the expressions

2 + 2 /4Y2 ) + .r+ = Tr " y

1/2 a 2
2(2 + 2 /4y )  e r)

r" e 2 y /y

where is the focusing force due to betatron focusing and self-fields.
r he r. 22 2

For the beam centroid motion, wr is given by (1/2 - nsrb/a N o , where ns is

the self-field index (- 2vR 2/y3 r). At low energies, the low frequency a-

is less than w0 so that resonance is impossible, while the fast frequency

Q+ is much greater than wO, giving a weak, high )rder resonance. For the

motion of particles within the beam, on the other hand, w 
2 = (1/2 - ns) 2
r s 00'

and the slow frequency can be a few times larger than w0 , giving rise to a

low order resonance. (The fast frequency is still much larger than wO.)

The ratio I _I/w 0 is plotted as a function of energy in Fig. 11 for param-

eters relevant to the NRL betatron (1-3 kA, Be = 2.5 kG, rb = 1 cm). Near

the present injection parameters, which yield a 1 kA ring with y = 1.5-2.0,

there are a number of low order resonances. Their effect on the beam seems

to be rather weak, however. We show in Fig. 12 the effect of errors of 1%

and 4% in the vertical field on a particle near the L = 2 resonance in a

2 kA beam. The particle is started near the origin, and its betatron

motion is amplified to just 0.5 cm for the 4% error. It is not possible

for the motion reach an amplitude much larger than the beam radius since

the potential well due to the self-fields outside the beam is strongly

anharmonic. Also, the cases shown in Fig. 12 are not self-consistent in
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Figure 11. Plot of betatron tunes versus energy for typical NRL betatron
parameters, showing low integer resonances.
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Figure 12. Amplification of betatron oscillations due to an t = 2 reso-
nance in a 2 kA, y 3 beam. In (a), the error in the vertical

t field is 1%, and in (b) the error is 4%.

21



that the space-charge of the beam is held fixed while the test particle is

being advanced. In a self-consistent case, the whole beam would expand,

thereby changing w2 and detuning the resonance. We therefore believe that

these resonances may contribute to some heating of the beam, but are

unlikely to be responsible for the gradual current loss observed in the

experiment [2].
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III. STELLATRON ACCELERATOR

1. RESULTS RELATED TO THE UCI STELLATRON

The stellatron accelerator adds a helical quadrupole to the modified

betatron design. The main effect of this is to increase the energy accept-

ance of the device. This helps to suppress the negative-mass instability

by inhibiting transverse motion of the beam. It also pushes up the transi-

tion energy at which the effective mass of the particles becomes negative

[9]. As reported in Ref. 1, our simulation results support these con-

clusions. In Fig. 13, we show results of two simulations confirming the

increase in the transition energy relative to the modified betatron. The

stellatron growth rates in this figure were obtained by putting the

smoothed approximation for the quadrupole focusing obtained by Chernin [9]

into the modified betatron dispersion relation obtained in Ref. 1.

The UC Irvine stellatron has succeeded in accelerating significant

amounts of charge from rest up to 10 MeV [10]. The peak current is over

1 kA up to about 4 MeV and gradually drops off, leaving a few hundred

amperes at 10 MeV.

We have applied the dispersion relation derived in Ref. 1, modified as

discussed above, to the parameters of this experiment. In addition to the

quadrupole focusing, however, we need to take account of the fact that the

UCI beam is charge-neutral. This is because it is created by runaway

acceleration from an initially stationary plasma. The runaway fraction is

thought to be on the order of 100% [10]. Thus the ions, in addition to

providing space-charge neutralization, also provide transverse focusing of

the electron beam, in the manner of IFT (ion-f.ocused transport). The

transverse focusing frequency becomes

2 2 2 (6)
r r
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Figure 13. Growth rates of the 1 = 20 negative-mass instability for
typical stellatron parameters. The solid line is for a stella-
tron field such that the helical field parameter e = 0.7, while
the dashed line is for c - 0.
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When we include the additional focusing term in the dispersion relation, we

find that its effect on the beam stability is greater than the effect of

the helical quadrupole, as shown in Fig. 14. In Fig. 14a, we see that

introducing the ions makes a significant difference in the peak growth

rate, and in the transition energy. In Fig. 14b, on the other hand, we see

that applying the helical quadrupole has little effect. (The helical field

is essential to generate the beam initially, however.) This result was

suggested by Ishizuka [10], and is in agreement with the experimental

findings. Disruption of the beam accompanied by strong rf oscillations at

harmonics of the circulation frequency is seen early in the acceleration

cycle. This is thought to be due to the onset of the negative mass insta-

bility as the beam goes through the transition energy. The transition

energy is observed to increase with the beam current, which is consistent

with the ion-focusing picture. For a 1 kA beam, the onset of instability

is observed at around 2 MeV, in agreement with the prediction from Fig. 14.

2. ELECTROMAGNETIC INSTABILITY DUE TO THE HELICAL FIELD

A virulent electromagnetic instability observed in simulations of the

stellatron was reported in Ref. 1. We subsequently derived an analytic

model of this interaction which is reproduced in Appendix A. The mode is a

three-wave coupling resembling the free-electron laser interaction, except

that the beam mode involved is transverse rather than longitudinal. Using

FEL terminology, the quadrupole field field acts as a wiggler and upshifts

the slow transverse mode on the beam so that it can intersect the lowest

electromagnetic mode, the TE11 mode. This is illustrated qualitatively in

Fig. 15.

The analytic model given in Appendix A gives reasonably good agreement

with the simulation results. For high currents and strong focusing, the

growth rates can be very large. A simulation of a 10 kA, 3.3 MeV beam

showed disruption of the beam in just one turn around the 1 m radius

device. We have seen linear growth of the instability in simulations with

currents as low as 300 A.
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Figure 14. Growth rates of the t = 1 negative-mass Instability for
parameters typical of the UCI stellatron, illustrating the
large effect of ion focusing on the growth rate and transition
energy.
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We have looked at the 3-wave instability for the parameters of the UCI

stellatron (see Fig. 14), and find that growth is predicted in the energy

range 2.5-3.5 MeV, with the intersection in Fig. 15 occurring at about Z =

18. The predicted growth rate is quite large, about 30 e-foldings/psec.

At this point we do not know whether any of the current loss in the experi-

ment can be attributed to this instability. Thermal effects have not been

included in the theory, and at high t-numbers may stabilize the mode. A

quadrupole focusing experiment being mounted at PSI has been deliberately

designed to push the intersection in Fig. 15 out to high L-numbers [11].
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IV. SOLENOIDAL LENS BETATRON

1. BEAM TRANSPORT

The solenoidal lens betatron is a strong-focusing device with sole-

noids of alternating polarity placed around a torus [4]. As the beam

travels around, it rotates poloidally at the Larmor frequency, changing its

direction of rotation from one solenoid to the next. A device of this type

has been constructed at the Institute for Accelerator and Plasma Beam

Technology (IAPBT) at the University of New Mexico.

We have simulated beam transport in a solenoidal lens betatron using

both the exact fields for finite-length solenoids, and a sinusoidal

approximation to the fields, with similar results. The simulations,

described in Appendix B, demonstrate the higher mismatch tolerance of the

device relative to the modified betatron. Recent experiments on the

machine have convincingly shown this property by being able to transport

current around 180 degrees without any vertical field [4]. This tolerance

is considerably larger than that seen in the simulations in Appendix B

because the experimental injection energy is just 300 kV instead of 1 MeV,

so that that the centrifugal force on the beam is substantially smaller.

If this large energy acceptance is to be maintained as the beam is

accelerated, then the solenoidal fields must be ramped in synchronism with

the beam energy. This can be seen from the expression for the momentum

compaction factor

0 - + 1 (7)

where B0 is the amplitude of the solenoidal field and Bz is the vertical

field. This equation can be simplified if we assume that the beam radius

is matched to the solenoidal field, and that the beam is space-charge

2 1dominated, i.e., the emittance is negligible in the force balance equation.
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Since the beam is injected from a cathode shielded from magnetic fields,

then it is always in the Brillouin limit (assuming it is matched), so that

the force-balance equation is

1 1  0Sns + - 0 (8)
B

Substituting this into Eq. (7) we obtain

-1 (9)

Since Bz is proportional to the beam energy, the compaction factor rapidly

approaches the weak-focusing limit if B0 is not increased. In Eqs. (7)-(9)

we have assumed 1 - n = 1/2 where n is the external field index. However,

the the external index in the IAPBT betatron is essentially equal to unity,

as will be shown below. Thus, in the weak focusing limit, there is no

transverse focusing on the beam. It will therefore be necessary to provide

some significant solenoidal focusing throughout the acceleration. One

important benefit of keeping the ratio B0/Bz constant is that no orbital

resonances are crossed. Such resonances were a severe problem in previous

solenoidal lens betatron experiments by dePackh [12].

We can show geometrically that the external field index in the IAPBT

betatron is effectively unity. The vertical field coils for the experiment

are wound on cylindrical mandrels as shown in Fig. 16. Unlike the usual

sector magnet [13], the ends are not canted. From Fig. 16, we see that the

requirement for an equilibrium orbit is

etn = eout = es/2 (10)

where in' eout are the entering and exiting angles of the orbit at each

magnet, and es is the angle from the center of one magnet to the center of

the next. This means that the radius of curvature of a particle inside the

magnets must beI 30
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Rd ()

2 sin "1 es/2

where d is the length of the magnets. The vertical magnetic field has been

experimentally measured to be uniform over a radial interval of ±2 cm from

the axis [13]. Thus, for a given particle energy, the equilibrium orbit

conditions (10) and (11) can be satisfied for a continuum of radial

particle positions. Intuitively, this follows from the fact that the path

length inside the magnetic field is the same for all orbits satisfying

Eq. (10), regardless of the length of the orbit circumference (see

Fig. 16).

2. BEAM STABILITY IN THE IAPBT BETATRON

A general treatment of stability of the solenoidal lens betatron is

complicated by the lack of toroidal symmetry in the equilibrium. One can

overcome this problem in dealing with toroidal mode-numbers lower than that

associated with the solenoidal fields by an averaging procedure. Details

of this calculation are given in Appendix C. One finds that the net effect

of the solenoidal lenses is to increase the radial and vertical focusing on

the beam compared to a conventional betatron. Qualitatively, however, the

beam behavior is similar to the conventional betatron in that the trans-

verse oscillations are uncoupled. In the negative-mass simulations

described below, we observe little motion along the z direction, unlike the

modified betatron.

The analytic model in Appendix C predicts a finite negative-mass

transition energy due to the strong-focusing, as in the stellatron [9].

Also like the stellatron, the strong focusing suppresses the peak growth

rate of the instability. This is illustrated in Fig. 17, which shows the

t = 5 growth rates for parameters close to those of the IAPBT betatron.

These curves were obtained from the dispersion relation of Ref. 1 by set-

ting Be = 0, and by adding the smoothed focusing effect of the solenoidal

lenses into the expression for w 2

4r
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Figure 17. Growth r~ites of the t, = 5 negative mass instability in the UNM
solenoidal-lens betatron.
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1 2W2 +W2 +1 0B12

'r r+8 (12)
Y

(The vertical focusing also increases, but the vertical oscillations

decouple for B. = 0.) Note that if the solenoidal focusing strength is

kept at its initial high value by ramping the solenoidal field with the

vertical field, then the peak growth rate is reduced by about a factor of

five from the case where the solenoidal field is held fixed.

We have run a number of simulations to compare with the analytic

predictions. A sinusoidal approximation to the reversing toroidal field

was used, with the wavelength chosen to correspond to 30 solenoids around a

1 m radius torus. In the IAPBT betatron there are 40 solenoids, but 10 of

these are on straight sections which we do not simulate here. First, we

looked at the I = 5 mode on a 1 MeV, 100 A beam. The beam radius was

1.75 cm and the pipe radius was 4.5 cm. The peak solenoid field

(134 gauss) was chosen to have a matched beam at 1 MeV. Essentially no

growth of the instability was seen in a period of 230 ns. The theoreti-

cally predicted growth rate is 7.6 x 10-4 cm"1 , which would produce about

5.3 e-foldings in 230 ns. (This growth rate is larger than those in

Fig. 17 because of the lower solenoidal field.) We attribute the observed

stability to the spread in particle circulation frequencies. Since the

beam has no net poloidal rotation due to the alternating direction of the

toroidal magnetic, Eq. (3) is always satisfied. Thus Eq. (2) should be an

approximate stability criterion, as it is for the modified betatron (see

Sec. II). Applying Eq. (2) to the present simulations, we obtain 8.75 x

10-4 cm-1 for the right-hand side, which is marginally sufficient for

stability.

Assuming this is the correct reason for the lack of growth in the

simulation, it is clear that finite beam radius is an important stabilizing

mechanism in the IAPBT betatron. However, the beam radius shrinks as the

beam is accelerated, particularly if the solenoidal field is ramped with

Bz . For the latter case, the beam radius is approximately
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r = P (13)

Therefore, we must trade off the increased stability from the strong

focusing with the decreased stability due to shrinkage of the beam radius.

For the case in Fig. 17, for example, Eq. (13) predicts that the beam

radius will shrink from 2 cm at y = 1.6 to 0.045 cm at y = 20. From

Eq. (2), we find that the z = 5 mode is still just marginally stable at

y = 20.

The smooth approximation to the focusing force becomes dubious as the

mode-number i approaches Ns /2, where Ns is the number of solenoids. How-

ever, since no approximation is made in the simulations, such modes can be

looked at numerically. For the same beam parameters as above, we simulated

the I = 15 (= N s/2) mode, and observed a strong instability, with a growth

rate of 2.2 x 10 cm"1 . A particle plot from the nonlinear stage of the

instability (Fig. 18) shows standard negative mass behavior, i.e., radial

kinking accompanied by toroidal clumping. The instability has almost satu-

rated at the point reached in Fig. 18, but 1/6 of the current has been

scraped off onto the wall. If the wall radius had been larger, the insta-

bility might have saturated without current loss.

If we naively apply the analytic dispersion relation to the t = 15

mode, we obtain a growth rate of 2.2 x 10- cm"1 , the same as the numerical

growth rate. However, the right hand side of Eq. (2) gives 2.6 x 10
- 3

cm" , thereby predicting stability due to thermal effects. Thus, it

appears that the cold beam growth rate for I = 15 is significantly larger

than that predicted by the analytic theory.

With respect to the negative-mass transition energy, on the other

hand, the prediction of the analytic theory does seem to hold even at

L = 15. We have simulated this mode at y = 1.6, which is the injection

energy for the IAPBT betatron, and observe no instability. The analytic

theory predicts stability at least up to y = 2.2 (cf. Fig. 17).
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3. HIGH CURRENT BEAM STABILITY

If the IAPBT experiments at 100 A are successful, then higher current

experiments will be undertaken. We have performed a number of simulations

at 10 kA to investigate negative-mass instability growth in this regime.

In each of the simulations, we set the beam radius to 2 cm in order to have

reasonably good resolution of the beam on a 50 x 50 mesh. This means that

the solenoidal magnetic field necessary to get a matched beam decreases as

the energy increases. Thus the linear growth rates, shown in Fig. 19, do

not represent those experienced by an accelerating beam where the solenoi-

dal field is kept constant, or ramped up. We assumed 20 solenoids around

the torus, and simulated the mode X = Ns = 20. In Fig. 19, we compare the

simulation results with (a) growth rates obtained for a conventional beta-

tron with Be = 0, and (b) growth rates obtained by applying the smoothed

approximation for the solenoidal lenses. As in the 100 A simulations

described above, we find that the high- growth rates are anomalously large

when thermal effects are taken into account. Nevertheless, the simulations

for y = 7 and y = 12 both saturate in a manner similar to the 100 A case

shown in Fig. 18, with little loss of current. Plots from the nonlinear

stage of these simulations are shown in Fig. 20. There is considerable

churning of the beam after these plots are taken, and this stage of the

instability is probably not well represented by the single-mode simulation

scheme. The simulation for y = 17 was not run long enough to see

saturation.

Experimental results from the UCI stellatron suggest that development

of the negative-mass instability does not destroy the beam, and that most

of the current can be accelerated beyond the point where the instability

saturates. The above simulations suggest that this may also be true for

the solenoidal lens betatron.
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Figure 19. Comparison of simulation growth rates for the X - 20 mode on a
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smoothed focusing result (solid line).
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Figure 20. Nonlinear development of the £ = 20 negative mass instability
on a 10 kA beam in a solenoidal lens betatron. In (a), the
beam energy is y =7 and in (b), y =12.
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V. CONCLUSIONS

We have investigated thermal effects on the negative-mass instability

in the modified betatron. For a monoenergetic beam, the stabilization is
strongly dependent on the poloidal rotation frequency of the beam. When

this frequency is close to zero, we observe total stabilization of the

instability at high mode-numbers.

For parameters close to the NRL betatron at 1 kA, our calculations

agree with the observed stability of the beam at the injection energy. We

predict linear instability at low toroidal mode-numbers as the beam is

accelerated above 1 MeV. The nonlinear development of the instability is

unknown for a 1 kA beam. Simulations of 10 kA beams show loss of 50% or

more of the beam current at low energies. Several kiloamperes remain

circulating after the instability has saturated, so that a 1 kA beam may be

able to survive without current loss, although deterioration of beam

quality is to be expected.

We have simulated beam stability at high energies and high L-numbers,

in the regime of the so-called hybrid instability. In all such simulations

for 10 kA beams, we observe saturation of the instability without loss of

beam current. There is much less transverse kinking of the beam than in

the negative-mass instability regime which occurs at lower energies.

Calculations for the UCI stellatron show that the presence of back-

ground ions has a larger stabilizing effect on the negative-mass insta-

bility than the helical quadrupole field. The predicted energy for onset

of the negative-mass instability is in agreement with experimental observa-

tions. Most of the beam current is observed to survive the disruption due

to the instability, but the effect on beam quality has not been measured.

A three-wave electromagnetic interaction was discovered in the

stellatron. For high currents and strong focusing, its growth rate can be

very large. However, it is possible to choose parameters such that the
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interaction is pushed out to large mode-numbers, where thermal effects may

stabilize it.

A theory of the negative-mass instability in the solenoidal lens

betatron was derived using a smooth approximation for the focusing effects

of the solenoidal lenses. The theory predicts stability for the 100 A UNM

betatron from its injection energy, y = 1.6, to y - 2.2. Above this

energy, simulations show a strong negative-mass instability, which produces

a transverse kink on the beam with an amplitude comparable to the wall

radius. Some current loss results. Simulations with currents up to 10 kA

show similar results, suggesting that most of the current can survive the

instability.
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Electromagnetic Instability In a quadrupole-focusing accelerator
Thomas P. Hughes and Brendan B. Godfrey
Mision Research Corporaions. 1720 Randolph Road, S E. Albuquerque, New Mexico 87106

(Received 18 October 1985; accepted 10 February 1986)

The addition of helical quadrupole focusing to a modified betatron configuration is shown to give
rise to an electromagnetic instability under certain conditions. The instability arises from a three-
wave coupling between the helical field, a transverse mode on the beam, and a transverse-electric
waveguide mode. An analytic dispersion relation is derived. Several features of the instability are
confirmed using three-dimensional computer simulations.

I. INTRODUCTION The externally applied magnetic fields consist of a vertical
Betatrons and other recirculating accelerator designs field B, c r-', where s is the so-called field index (we assume

have been studied in recent years as compact accelerators for s = 1/2), a solenoidal field B,, and a helical quadrupole field
high-current electron beams. ' Conventional" and modi- B,. This is the configuration of the stellatron accelerator. A
fled' betatrons require precise matching of the beam energy configuration where the helical quadrupole field is generated
to the vertical magnetic field if a fixed major radius is to be by two current-carrying wires instead of four has also been
maintained. To overcome this restriction, strong focusing in proposed.' We assume that the beam can be modeled as a
the form of a helical magnetic quadrupole has been added to string of rigid disks. This means that we follow the trans.
the modified betatron configuration.3"' This considerably in- verse motion of the beam centroid, and ignore any internal
creases the tolerance of the device to mismatch. In this pa- dynamics. This treatment is valid provided the drift-tube
per, we show that helical quadrupole focusing can lead to an minor radius is much greater than the beam radius, b~ia,
electromagnetic instability arising from a three-wave inter- since the fields we need to consider have a transverse scale
action between the static helical field, a transverse mode on length - b. We ignore the perturbed 8 motion of the beam
the beam, and a transverse-electric (TE) waveguide mode. under the assumption of relativistic stiffness in this direc-
This behavior is reminiscent of that which occurs in planar tion, i.e., 7' 1, where r is the beam relativistic factor.
geometry in the presence of a rippled magnetic field.' Unlike In equilibrium, the matched value of the vertical mag-
the free-electron laser instability, which was recently ana- netic field is B, = yVe/R, where Ve is the toroidal beam
lyzed in the presence of helical quadrupole focusing,'° longi- velocity. Linearizing about the equilibrium position, we ob-
tudinal bunching of the beam plays no significant role in the tain the following equations of motion for the perturbed co-
instability that we describe here. Also, the instability is es- ordinates i of the beam centroid3 :
sentially independent of the radius of curvature of the de- r + I fl,2- fl, + U12 (p osmO+ sinmO)
vice. It is thus not related to the negative-mass instability, for -- - Z m + s)

example. The main effect of finite radius of curvature is to E, - V B )Ir,

discretize tne toroidal mode numbers. This can be impor- I + 1 L1 + flr + /un, (P sin mO - 1 cos mO)
tant, since if the instability width is narrow enough, it can fall = ( -E, + Va,)/r, (2)
between two allowed mode numbers and disappear (se9. S. where a dot denotes the total time derivative C ft
1I).

In Sec. II, wegivean analytic theory oftheinstability. In + ( V/R)8/JV, fl, := B,/r, fis = B/r., E and B denote
Sec. III, we obtain a simplified dispersion relation that yields the perturbed self-electric and self-magnetic fields acting on

an instability criterion. Section IV details comparisons
between the analytic theory and three-dimensional particle
simulations. Section V gives our conclusions.

In writing down equations, we use convenient units,
where the electron charge.e, mass m, and velocity of light cn

are scaled out. Lengths are normalized to c/o.ml cm, fre- TOROIWAL FIELD
quencies to wo, velocities to c, densities to wam/4,e2 , andelectric and magnetic fields to mcwo/e. To get frequencies
and growth rates in sec - ', multiply the normalized values by BIEATRO

3X iOt°.  EA B,

If. ANALYTIC MODEL OF INSTABILTY QAEPL IL

The geometry and coordinate system we use are illus- i ,
trated in Fig. 1. An electron ring of major radius R and R
minor radius a circulates around the center of a conducting FIG. I. Geometry of stellatron accelerator showing conducting toroda
torus whose major and minor radii are R and b, respectively. cavity and extemaDly applied magetic fields.
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the beam at the perturbed position, andu denotes the ampli- xg -, -- l'( g ) = 0, (8b)
tude of the quadrupole field index. The quadrupole field in- afl )

dex is a normalized measure of the transverse gradient of the nf2 + 1 + fl_ fl, -

quadrupole field. It is defined by (R /B, ) (B,,/ar) evaluat- 2 - r71 - I 2/R 2
edat r = R, and has the form/ pcosmO. Letting"--+i, x ' -f (a + (8c)
Eqs. (1) and (2) can be written as +80jf l2 ia _ ~ -,o. (fln + mn. I + n2 _2 (n _ + Mn, n,

Z flinl~g-fl,2e" 28

= -[E,+iE,+iV(B,+iB,)]/y, (3) a(fl +mn, )
2

where * denotes the complex conjugate. To calculate FE and + 0 2 - _ (1+m)2/R2)

B, we use a Green's function approach. Maxwell's equations X , -- ( "/ )* = 0, (8d)
can be written as

VxVxE-_W 2E =iJ, (4) where f" ± = w 1(1, and a -vI/,,/yz 8.4v/yb 2. Note that
this is a closed system of equations, in which only mode

B- (i/w)VXE, (5) numbers land - m -Iappear. Thisis aconsequence of the

where we assume an e - '" dependence for the perturbed -:omplex-conjugate sign appearing in Eq. (3). Further, note

fields and currents. The solution to Eq. (4) can be written that is coupled only tog -_ - ,, ,and is coupled only
down by using a dyadic Green's function," constructed tog -,,_, . Thus, the 4X4 matrix of Eq. (8) splits into two
from the solutions to the homogeneous counterpart of Eq. 2 X 2 matrices. The determinant of one 2 x 2 matrix gives the
(4). The expressions obtained are infinite series." In this dispersion relation
paper, we will deal only with the interaction of the beam with (z2 _ 1 J2 + a 2  )
the lowest electromagnetic waveguide mode, i.e., the TE, -+ 2 " 2 

_ 2 2/R2J

mode. Therefore, we extract from the infinite series for the X((, M 1)2  
n2 (n - ) 1 6

fields those terms containing the TE,, resonance. All other 2
self-field contributions are neglected. This procedure is equi- a(2 ml'.
valent to treating the beam as a weak perturbation of the 2. ... .m.) = 0 (9)
vacuum TE,, eigenmode. For example, the expression for 17 1 - (1 + m)/R - - O
the ed" component ofE, evaluated at the location of the beam The determinant of the other 2 x 2 matrix can be obtained
is from Eq. (9) by letting o- - o. Having obtained a root for

I_+_ (b), w from Eq. (9), the corresponding normal mode for gcan be
EV= - VCA - lflR)r 07 + ' obtained from Eqs. (8a) and (8b), and is a linear com-

bination of two terms with space-time dependencies

where(6) exp(ilO - iot) and exp[ - i(m + 1)0 + iot 1, respectively.
Multiplying out the dispersion relation in Eq. (9), we

IV ' = (b 2 _ 711 2 )1 2( 1711b) obtain an eighth-degree polynomial in o. Numerical solu-
(whereJ, is a Bese function), ill, denotes the lowest root of tion for the sample parameters in Table I gives the set of
J , (77b) =0, and O(b IR) denotes toroidal corrections, curves shown in Fig. 2. The parameter E (which is frequently
which we neglect under the assumption R>b. Also, v is used by stellarator physicists) in Table I is related to / by
Budker's parameter, i.e., the number of electrons per unit u = Emfle/20,. The curves can be classified as follows:

length of the beam times the classical electron radius. In Electromagnetic modes:
deriving Eq. (6), we have used the rigid-disk approximation 2 2

to write J, = -pP=i(w - Iln,)pip, where p is the beam (A) + 12/R 2 1, + (m + 1)2/R 2,

density. Similar expressions are obtained for the other fields. Cyclotron modes:
We now proceed to solve Eq. (3) by writing g in the Wo= (m + 1)0l, + ", ln. - n'. (10)

form
" = V g , d - + g -a + ,(7) Low-frequency transverse modes:

W = (m +i1) 11, - WS, litn +c,

where +, - refer to "forward" and "backward" waves,
respectively. Substituting this into Eq. (3), we obtain the TABLE I. High-current stellatron parameters used in particle simulations.
coupled equations

a_ 2  Toruin major radius I m
Beam minor radius . cm

(-lv.2 ++0~e B l/ 2  eam maor rwdiu2 cm
(8s) eam current (1) 300 A-10 kA

- )2+ 1e amenergy(y) 7
m + -(. . -+ mil,)fl, Toroidal maneic field 5 kG
2 Vertical mapetic field 118G

a(l. - oml,) Quadrupole field ) 0.7
Qudupl mod numberR (m) 14-30
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2.00iwhere w, - I/4fi /fn. These approximate forms are based
ILECTIOMAGNETIC MODES on the assumption n, >fl,, which is satisfied for typical stel-

. CYCLOTRON MOD98 a p
LOW ,.IQUINCY TRANSVERSE MODESao mt

1.0 -I It can be shown from Eq. (9), and is apparent from Fig.
- - - 2, that the dispersion relation is symmetrical about the line

I = - m/2 (m is an even integer, equal to twice the number
of minor turns the helical conductors make in going one
major turn around the torus). More precisely, if we define

-. - -- -- ..- ' V = I + rm/2, then -o* as P'-. -'. In the following,0.0o we will look only at P> 0. Results for/'< 0 follow by symme-

Instability occurs as a result of the intersection of the
curve w= (m + 1)71, - w, with the electromagnetic mode

-1.00 . 2L-0 -40 -20 0 20 40 60 ( + 12/R2)1/2 The instability can be thoughtof asa
parametric process 2 in which the quadrupole field plays the
role of a pump wave. If we denote the three interacting

0.02 modes by subscripts 1,2,3 then we get the following frequen-
0.02 cies and mode numbers:

(b) Pump wave:
o.0 ow ' I"*,=O, k,=m/R,

Electromagnetic wave:

W2 .+
2

/R
2

)''
2

, V 22./R, (11)
L.r . Slow transverse wave:

So3-m + 1)1, k3= (Pn +I)/R ,

-0.01 - where we have neglected the small w, term in w,. In terms of
• "1 this picture, instability occurs when the usual matching con-

i ditions are approximately satisfied (W, + W2 = W11

-0.02 1__ k, + k2 = k3 ). Energy for the instability is provided by the

-60 -40 -20 0 20 40 60 beam via the negative-energy slow transverse mode.

Il1. DERIVATION OF INSTABILITY CRITERION
FIG 2. Frequencies and growth rates, denoted by wi, and r, respectively, An approximate expression for the growth rate can be
obtained from Eq (9) for Table prameters with b - .. - 10 kA
m=22 Ik (a).thetwounstablenteractionarecircled. ln(b), Vowt h  obtained by letting o=wI +6, where co,, =(7'
rates at imter (allowed) valus of/ are sbown. Mwhipiy w,, r by 3 x 1010 + 1

2
/R 2)1/2, in Eq. (9), andkeepingtermstoorder 62.This

to 1t values in units of e' gives the quadratic expression

-2e0,,(o,, -fl)(o,, - lfl + *)f*6+{2++,,( u, -Ifl)(,,-fl+f.)[(+m)fl-co,,]fl6

+ (w,, - lfl )af. - 2o,, 2 fl6 - a(w,, -fl,) [ (m + 1)fl - ,, fl =O. (12)

aI

Defining the quantities r,y2,y, by suming f, >O; the case [, <0 is discussed later). This

, 2w,, (ao, - ifl, ) (w, - Ink, + fl) means that the instability turns on when the frequency of the
transverse beam mode is somewhat above the TEI, eigenfre-

X [(I+ m)fI, -W,,),, (13) quency, rather than exactly equal to it. To see how the insta-
2 m a(atwi - lI, )2*, , y3- 2a 1,, , bility turns off as I increases, we rewrite Eq. (14a) to obtain

the condition for instability can be written as 2IS)A2 2/ "[4

(Y1 + Y2 - y3)2 <
4

rlr2, (14a) 9

or, equivalently, as the criterion for instability. The term y, is sensitive to the
value of i through the factor (+m)fl, -o,. As I in-
creases, y, eventually becomes large enough to violate this

Equations (12)-(14) allow us to make some more exact inequality, and the instability disappears (cf. Fig. 2). Equa-
statements about the conditions for instability. From Eqs. tion (15) also shows that as v-O (so that y2- 0 ) and p-O,
(13) and (14b), we see that the instability disappears for the unstable region in Ispace becomes narrower. Iflwere a

=, as one would expect. Equation (14a) shows that continuous variable, then the instability would persist near
( + m)f, > o, (i.e., y, > 0) is required for nabity(a. ( + m)fl, =w I as long as v and 1 were finite. Since I is
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discrete in a toroidal system, however, the unstable region I I I
can fall between two integer values of 1, and no instability
would be seen. U PARTICLE SIMULATIONS

Finally, from Eqs. ( 12) and (14a), the peak growth rate I RIGID DISK SIMULATION

as a function of u is found when u is chosen so that
y, + y2 - y3 0. The growth rate r is then given by

a [(m+) , - IJ-(wI-I0,) (16) 0.01
2 WI(WsI--ll, + n.) 1

For the parameters of Fig. 2, this equation predicts
r = 1.06x 10- 2 (3.18x l0'sec'in cgs units) for/= 0, in
good agreement with the exact result of 1.12 X 10', which
occurs for e =0.8 (u=380).

Thus far, we have assumed 0, > 0. If 10 is negative,
then Eq. (14b) shows that the instability disappears. This is
to be expected since the slow transverse wave then becomes a
fast, positive-energy wave. At the same time, the cyclotron
wave w =-(m + 1) (, + fl. becomes a slow wave, with the
potential for an unstable interaction. We have not examined
this case, however, since previous calculations3 have shown
that the parameter space in which single-particle orbits are
stable shrinks greatly when the sign of fl, is opposite to that
ofm. 20 22 24 26 26 30

IV. COMPARISON WITH NUMERICAL SIMULATIONS
FIG. 3. Growth rates of instability versus quadrupole mode number m

To verify the above analytic calculations, we have per- (which must be an even integer) for parameters n Table 1. and 6 = 9.9.
formed three-dimensional numerical particle simulations I - 10 kA. Theoretical results (solid line) are compared to simulation code
with the code IvoaY. 3 In IVORY, field quantities are repre- results.
sented on a spatial mesh in the r-z plane, and by Fourier
modes in the 0 direction. A given field component thus has simulation form = 22 in which the beam was represented by
the form a string of rigid disks in the code, instead of the more realistic

particle representation. There are at least two possible rea-
F(reOz,t) .f. (rz,t)cos n8 + g. (rj,t)sin n8. sons why agreement with the analytic result is better for the

17 rigid disk simulation. First, the initial field energy level is
(17) lower for the latter as a result of the absence of internal de-

The number of Fourier modes kept in the sum depends on grees of freedom of the beam, so that there is a longer visible
the problem. At a minimum, we must retain those modes period of linear growth. In the simulations with particles, the
that the linear theory indicates are coupled together. In addi- field energy increases only about one order o! magnitude
tion, the n = 0, m modes must be kept since the equilibrium over its initial value before saturating, as shown in Fig. 4.
fields contain components in these modes. The self-consis-
tent fields of the beam are advanced in time using the full
Maxwell equations. Particles are advanced using the full 1o 3

Lorentz force equations. The stellatron fields are computed I I
from analytic expressions.' Z

In deciding on parameters for the simulations, comput- LINEAR GROWTH -

ing costs constrained us to choose cases that minimize the io -
running time and storage requirements. Thus, we concen- I B'-
trated on cases with large expected growth rates. In addition, WALL

we either chose I - 0, or chose m + I to be a small integer
multiple of .(Recall that I denotes the TEl wave mode 10 1

number.) This minimizes the number of particles needed to OL

resolve the different mode numbers. For I =- 0, for example, B aEAM OSCILLATtONS DUEwe see from Eq$. ( I1I ) and ( 17) that only mode numbers 0, : TO QUADRUPOLE _

m must be represented in the simulations. i I I
Choosing I -f 0, we used the parameters in Table I with 1o o 10 20

b - 8.8 and a 10 kA beam current, and performed simula- TIME (Root)

tions for differeit values of the quadrupole mode number m. FI. 4. Eerg in R =22 Oed components (n -torodal made nuber
The growth rates obtained are plotted in Fig. 3 versus those a eamisowigdeveuopmentofl _ 0, m -2, mstability in Fig. 2. This
obtained from Eq. (9). We also show the growth rate from a pbx was recrated by the smulation code IvoRy.
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109.5 o: SIMULATION4S
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'L

100

ar- 0.1 1 10
-,- MIN BA•MIBaAX CURRZNT (kA)

90.5. FIG. 6. Growth rate of instability venus beam current for Table I param.
-9.50 -4.75 0.00 4.78 9.50 eters with m - 22, b = 9.0. Simulation results are compared to theoretical

2 prediction.

FIG. 5. Contour plot of n = 0 component of toroidal self-magnetic field B,
dunng early nonlinear growth of an I = 0. m = 20 instability. The contours Thus far, we have reported on results for I = 0. Now, we
have linearly increasing values from A to G. The structure is that ofa TE,, look at a case for which ! = m = 14. The dispersion diagram
mode. The distortion of contours in the center is a result of the presence of for this case, obtained from Eq. (9), is similar to that in Fig.
the beam.

2, except that one of the unstable regions occurs around
1 = 14. The simulation parameters used are those in Table I,

This means that the growth measured may not be truly expo- with I = 10 kA, b = 8.4 chosen to enhance the growth rate.
nential. Second, in the particle simulations there is a spread From Eqs. (II) and (17), we see that mode numbers 0, 14,
in the energy of the particles as a result of space charge, 28 must be represented in the simulation code. Field energy
giving rise to a spread in transverse oscillation frequencies. in the modes n = 14, 28 is observed to grow exponentially at
This may have a stabilizing effect. a rate r = 6.3x l0 - , compared to the analytic rate

There is good agreement between simulations and the- 7.8X 10- 3. In this case, it is then = 14 field plots that show a
or) as to the turn-on and turn-off of the instability. The TE, TE mode character similar to that in Fig. 5.
cutofffrequency for the drift tube isq, = 1.84/b =0.21. Fig- The nonlinear development of the instability is an im-
ure 3 shows that, in agreement with the analytic prediction portant issue. To address it completely, many modes would
(Sec. III). instability sets inform> 7 1,/fl,=2l. No insta- have to be kept in the simulation code, since nonlinear effects
bility is seen during the length of the simulations for m > 26 give rise to the generation of modes other than those in-
(we ran cases for m = 28,30). volved in the linear growth stage. However, we believe that

Further evidence of the electromagnetic character of the the simulation results with just the linear modes present may
instability comes from two I = 0 simulations where the mi- give a good guide to the nonlinear development of the insta-
nor cross section of the drift tube was varied, keeping m bility for the following reasons. First, the quadrupole field
fixed. For m = 20, I = 10 kA, b = 8.8 (other parameters as gives an initial perturbation to the mode number m, so that
in Table 1), no growth was observed, since mfl, < 17,,. On the fields in this mode are not growing from random noise
increasing the minor radius to 9.5, 17, decreased to give mft, (see Fig. 4). Second, although wave-wave interactions are
Z 17,, and strong growth was observed. In addition, a con- not treated correctly if we do not include other modes, the
tour plot of the magnitude of the n = 0 component of the wave-particle interactions are treated nonlinearly. The sim-
perturbed B,, shown in Fig. 5, shows the sin( # + 0o) ulations show that in those cases with large linear growth
x J, (7,, 2 p) dependence ofa TE 1 1 mode. Here, p, 44 are polar rates, which we can therefore afford to run to "saturation,"
coordinates in the plane of Fig. 5, and #0 is a phase factor. the wave amplitude grows until the beam strikes the wall

In order to see whether the aspect ratio of the torus (see Fig. 4). As a result, most of the beam particles are lost,
affects the instability, we increased the major radius R first leaving a large-amplitude TEI wave in the drift tube.
to l0 and then to 10, keeping m/R fixed at 0.22 and choos- Finally, we look at what our analysis predicts for the
ing I = 0. No significant change in the growth rate was ob- stellatron experiment presently under way at the University
served in the simulations. This is in contrast to the negative- of California at Irvine (UCI). 5 6 The parameters for this
mass instability,14 where the growth rate goes to zero as experiment are tabulated in Table 11. Because of the low
R-- o . current, the width of the instability is quite narrow, extend-

Next, we tested the v"1 2 dependence of the growth rate ing over at most one I number. As a result, small changes in
on the beam current predicted by Eq. (16). The parameters parameters can cause the instability to abruptly appear and
in Table I with b = 9.0, m = 22 were used to perform simu- disappear (cf. Sec. HII). We find that the beam is unstable in
lations at 300 A, I kA, and 10 kA beam currents. The results the region y = 2.4-2.45. With a one-turn accelerating vol-
in Fig. 6 show that the predicted scaling is supported by the tage'" of 500 V, the beam would spend sufficient time in this
simulations. region to undergo 5-6 e foldings. This instability may be
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EQUILIBRIUM AND STABILITY PROPERTIES OF THE SOLENOIDAL LENS BETATRON

Thomas P. Hughes and Brendan B. Godfrey
Mission Research Corporation, 1720 Randolph Road, S.E.

Albuquerque, New Mexico 87106

Summary in Fig. 2. Simulations of beam behavior in this
device are carried out using the electromagnetic par-

The solenoidal lens betatron uses a series of solen- ticle code IVORY. 3  We find that to minimize the
oldal lenses arranged around a race-track shaped envelope fluctuations, the field in ti., middle of
drift-tube to provide strong transverse focusing for each solenoid must be about 100 Gauss. The discrep-
a high-current electron ring. Equilibrium behavior ancy between this and the analytic result is presum-
of the circulating beam is examined for parameters ably due to the thickness of the cusps, which lowers
close to those of the University of New Mexico mach- the average field value.
ine currently under construction. The tolerance of
the beam to mismatches in the toroidal and vertical
fields is evaluated analytically and using a particle
simulation code. The linear and nonlinear develop- LENS d LENS
ment of the negative-mass instability in the device

* is also studied. Stability behavior comparable to
that in a conventional betatron (i.e., one with no
toroidal magnetic field) is found. Growth rates are
compared to those obtained from an analytic model. . --

Equilibrium Properties

In order to confine and accelerate high currents
in a betatron, the conventional weak focusing must be Vpol
supplemented. In the solenoidal lens betatron (SLB) l

this is accomplished through the use of periodic sol-
enoidal lenses, as shown In Fig. 1. The SLB thus
differs from the "modified" betatron,2 for example, Figure 1. Section of Solenoidal Lens Betatron. The
which uses a uniform toroidal field. For a matched poloidal velocity Vpol reverses from one
equilibrium, the beam in the SLB reverses its solenoid to the next.
poloidal rotation at each lens, so that the net
poloidal rotation is zero. This requires that the SOLENOIDS
beam be injected from a cathode which is shielded
from magnetic flux, so that the beam produced has no
canonical poloidal angular momentum. In the region
between lenses, the beam rotates at the Larmor fre-
quency, i.e., 00/ 2y, where no is the nonrelativ- 53
istic cyclotron frequency in the solenoidal field, - --...

and y is the relativistic factor. If the beam emit- - - "
tance is negligible, then force-balance requires

Ir ns 
+ P2/ -oi).. ..

where ns - 2vR is the self-field index, v 0 21/20
is Budker's parameter (beam current divided by 17
kA), R and a are major and minor beam radii, respect-

ively, a is the beam velocity normalized to c, p is
the ratio Be/Bz, where Bz is the vertical Figure 2. Vector plot of one-half period of toroidal
betatron field, and Be is the solenoidal (toroidal) field, showing location of solenoidal
field between the lenses. We have assumed that the windings.
vertical field index is 112. From Eq. (1), we can
compute the solenoidal field needed for a matched
beam, given the other quantities. Sample parameters Mismatch In Solenoidal Field
for initial experiments at the University of New
Mexico 4UNM) are: R - 1 m, a - 2 cm, y - 3, v - To check the tolerance of the beam to mismatch
5.9.10-' (100 Amps). From these, we compute that in the solenoidal field, we run two cases in which
Be - 80 Gauss is required. This result is expected the value of Be is doubled and halved respectively.
to be accurate in the limit where the thickness of In each case, we ensure that the beam has zero canon-
the magnetic cusps is much less than the distance ical poloidal angular momentum. The resulting envel-
between them. A scenario closer to that envisioned ope oscillation amplitudes are shown in Fig. 3. The
for the UNM device is to have 21 cm long solenoids beam oscillates between radii of 2 cm and 0.5 cm for
spaced 10.5 cm apart. There are thus 20 solenoids -, - 200 Gauss, and between 2 cm and 3 cm for Be
evenly spaced around the 1 m major radius torus. We - 50 Gauss. Experimentally, it should not prove dif-
model the magnetic fields by using the exact, numer- ficult to avoid these large mismatches.
ically computed values for finite length straight
solenoids. One "cell" of the periodic field is shown
OW S50orted by the Office of Naval Research.

IEEE Trans. Nuc. Sci. NS-32, 2495 (1985)
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106. 2 aBc 2

Ar .Ar( ns + p2 /4) 2,/2 (2)

INITIAL BEAM
103. - - - - - - where b is the minor radius of the drift-tube, and

- ABzis the mismatch in the vertical field. This
equation is valid in the thin-lens limit, in which

j the solenoidal lenses act as a continuous radial
Z 100. focusing force on the beam. Equation (2) predicts a

momentum compaction factor (1/2 - n a2 /b2

p2 /4)-1. The effect of a 1.5% vertical held mis-
match is shown in the particle simulation in Fig. 4,

97. i---- -]-tn which we assume the sample UNM beam parameters
given above, and B = 100 Gauss. For these para-
meters, a - 1, so that the beam oscillates about an
equilibrium major radius of 98.5 cm. For comparison,
the momentum compaction factor of the weak-focusing

94. modified betatron is a - (1/2 - ns a2 /b2 )-1 - 2.5.
-6.40 -3.20 0.00 8.20 6.40 In this case a 1.5% mismatch in the vertical field

s(cm) gives the beam an average major radius of 96 cm. As
Figure 3. Amplitude of envelope oscillations for (i) seen in Fig. 4, the oscillation about this positionFiu- 200 Guss (inner bllet), (ii ) Be brings the beam in contact with the wall. Even with

- 50 Gauss (dashed outer line), the improved mismatch behavior of the SLB, however,
keeping the vertical field matched to the beam energy

106.4 rto within a few percent will require delicate tuning

of the experiment.

Stability Properties

A circulating high-current electron ring may be
DTRM subject to several types of instabilities, including

3 1ENTROI imD l negative-mass, resistive wall, and, in the case of
100 the SLB, which has accelerating gaps, the beam break-

up instability. In addition, single particle orbital
resonances may affect beam quality. Here, we concen-
trate on the negative-mass instability, since it is
potentially the most serious collective instability.

3

An analytic, high-current theory of this and some
closely related instabilities is described in a com-
panion paper.4 The theory is directly applicable

4Te6 only to devices in which the toroidal coordinate is
-6.4 0 6.4 ignorable in the equilibrium, such as the modified

betatron. However, we use the theory here as a guide
2(cm) in discussing the stability of the SLB. Our numeri-

cal results obtained from 3-D simulations using IVORY
106.4 are not restricted this respect. However, the number

of simulations we can perform, and their length, is
small due to computing expenses. We have therefore
concentrated on making runs at high currents, where
relatively large growth rates are expected.

The first case we look at is a 10 kA, 5.5 MeV
beam with a - 2 cm, and R - I m. We find that a sol-

BEAM enoidal field of 600 Gauss can transport this beam
100 U CNTROID with minimal (<10%) envelope modulation. The solen-

oidal lenses have the same configuration as in Fig,
. 2. The beam is given a small initial perturbation,

and the growth of I - 20 fields on the beam is fol-
lowed. The justifications for following just one

. .'mode in the simulations are: a) In the linear regime,
mode-coupling should be negligible; b) By following
one mode, direct comparison with linear theory pre-

98.6 dictions for +.hat particular mode are possible; c)-6.4 0 6.4 Since there are 20 solenoids around the torus, the t
- 20 mode is likely to have a large initial perturba-(eo) tion; d) Computing costs severely limit the number of

Figure 4. Effect of 1.5% vertical field mismatch in toroidal modes one can afford to keep. In the simu-
lation just mentioned, we find a rapid linear growth(a) SB, (b) modified betatron. rate of r - 1 .6 2xI0e sec

1 . The effect of the insta-

Mismatch In Vertical Field bility on the beam as it reaches nonlinear levels isMeshown in Fig. 5. The behavior is similar to the neg-

For a given value of the vertical field B2, the ative-mass behavior that one would expect to see in a
matched major radius of the beam is r - gyc/nz,
where r measures the distance from the major axis of
the torus. Transverse oscillations about this radius
are determined from the equation,

g I IEEE Trans. Nuc. Sci. NS-32, 2495 (1985)
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conventional betatron (89 - 0).5 The radial Z 10-3
deflection of the beam seen in Fig. 5(a) is 10
accompanied by the toroidal bunching in Fig. 5(b).
This behavior leads us to compare the linear growth
rate with that obtained from theory4 for a 8 - 0 U SIMULATION
beam. We find that the theoretical growth rate is RESULTS
very close: 1.63x108 sec o1 . In Fig. 6. we compare
results for the SLB at other energies with the
theory. For comparison, results for the same beam In
a modified betatron with a 1 kG toroidal field are Be 0
shown. In Fig. 7, the same curves are plotted for a 01 kA beam with a - 1 cm. For these parameters, we 6 6
have just one simulation result, at 5.5 MeV, and the . I * 10 kA
growth rate is again seen to be close to the 8 = 0 e
result.

109 4

2
B0  1 kG

z100 4 10 20

IFigure 6. Growth rates of t =20 mode versus
• .energy. Simulation results for SL9, and

(al analytic results for conventional (Be =
0) and modified (B = I kG) betatronsare
shown.

91 i 10-3

-8.8 -4.4 0 4.4 8.8

8.8 
8en)

6- Be 0

4.4

~4 4
..* , .,, .. . ., . .. . .,U-

"" . • ., • ''. , .. ;.'.. ' ,', I1 1 kA

-. , .,.0 SIMULATION .

-4.4-Be I kG

(b) 0-. 8(00 1 1 0 2o

0 27r/20
Figure 5. Effect of 1 * 20 negative-mass mode on 10 Fiqure 7. Growth rates of t - 20 instability for a 1

kA SLB beam. Particles at all 6-positions kA beam with 1 cm radius. Curves have
are plotted in (a). same meaning as in Fig. 6.

We must note that the results in Fig. 6 for the ' References
case B = 0 are somewhat artificial when y < 18.
In this regime, weak focusing alone is insufficient 1. S. Humphries, Jr. and 0. M. Woodall, Bull. Am.
to hold the beam together. The analytic model from Phys. Soc. 28, 1054 (1983).
which the growth rates are obtained uses a rigid disk 2. P. Sprangle7-C. A. Kapetanakos, and S. J. Marsh,
model of the beam, and so ignores the force balance Proc. 4th Intl. Conf. on High Power Electron and
required within the beam. It is tempting to conclude "Ion Beams (Palaiseau, France, 19g81).
from the results in Fig. 6 that in the SLB, the 3 . F. Hughes, M. 4. Campbell, and B. B. Godfrey,
strong focusing provides the necessary forces the AHRC-R-524 (Mission Research Corp., 1983);hold the beam equilibrium together, but that the neg. Phys. Fluids 28, 669 (1985).
ative-mass instabilities on the beam behave as if the 4. B. B. Godfrey and T. P. Hughes, this conference.
toroidal field were zero. Further numerical and ana- 5. R. W. Landau and V. K. Neil, Phys. Fluids 9,
lytic work will be performed to check this conclus- 2412 (1966).
ion.
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ABSTRACT

The solenoidal lens betatron uses solenoidal focusing to increase the

current which can be injected into a betatron. A dispersion relation for

the negative-mass instability in this device is derived using a multiple-

length-scale method to average over the nonuniform toroidal field. The

result qualitatively resembles the dispersion relation for the conventional

betatron, but has a finite transition energy and suppressed growth rates.

Both effects are due to the solenoidal focusing. It is shown that for a

space-charge-dominated equilibrium, finite beam radius has a strong stabi-

lizing influence even in the absence of any energy spread. Results of 3-D

numerical simulations confirm the predicted stability at low toroidal mode-

numbers. High toroidal mode-numbers show anomalously large growth rates,

but saturate in a relatively benign manner.
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1. INTRODUCTION

Several types of betatron-like accelerators for high-current charged

particle beams are being studied at present [1-5]. In order to overcome

the space-charge limit on the current at low energies, these devices apply

external magnetic fields in addition to those of the conventional betatron

[6]. At the Institute for Accelerator and Plasma Beam Technology (IAPBT)

of the University of New Mexico, a device is under construction in which

the additional fields take the form of solenoidal lenses [5], as shown in

Fig. 1. Forty solenoids of alternating polarity are arranged around a

racetrack-shaped drift tube. Thus, in contrast to the "modified" betatron

[1], which has a uniform toroidal magnetic field, the toroidal field in the

IAPBT betatron alternates in direction from one solenoid to the next, with

a magnetic cusp between each pair of solenoids. The advantages of this

configuration have been discussed by Humphries et al. [5].

In this paper, we consider the negative-mass instability [7] in the

presence of solenoidal lenses. This instability has been shown to be

important for high-current electron beams in the modified betatron [8, 9],

and stellatron [10], potentially causing serious disruption during the time

it takes to accelerate the beam. Derivation of a negative-mass instability

dispersion relation for the solenoidal lens betatron is complicated due to

the lack of toroidal symmetry. To deal with this problem, we use a

multiple-length-scale method to average over the varying solenoidal fields.

This leads to a dispersion relation like that for the conventional betatron

[7), with a modified transverse focusing term. The nature of the beam

equilibrium in the solenoidal lens betatron results in a considerable

spread in particle circulation frequencies at low beam energies. We evalu-

ate the stabilizing effect this has on the negative mass instability. The

analytic results are compared to three-dimensional particle-in-cell code

simulations. These simulations do not make use of the multiple-length-

scale approximation and so can be run at short wavelengths where this

3 |approximation breaks down.

C-5
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Figure 1. Conceptual picture of the solenoidal-lens betatron. In the
actual device, 40 solenoids are placed around the racetrack.
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This paper is organized as follows. In Sec. II, we obtain the

equations for the equilibrium and small amplitude motion of the beam. In

Sec. Ill, we derive a dispersion relation for the negative-mass instability

including the effect the solenoidal lenses. In Sec. IV, we calculate the

effect of circulation frequency spread. In Sec. V, we present some results

of particle simulations of the negative-mass instability in a solenoidal

lens betatron. Our conclusions are given in Sec. VI.

We shall use a system of normalized units which are convenient for

electron beam physics problems. A plasma frequency w0 is defined such that

c/w0 = 1 cm, where c is the velocity of light. Then length is normalized

to c/Wo, time to 1/w0, velocities to c, densities to wom/4ne2 , electric

and magnetic fields to mcwo/e, where e, m are the electronic charge and

mass respectively.

C-7



2. BEAM EQUILIBRIUM

For the purposes of this paper, we will assume that the accelerator

drift-tube is a torus rather than a racetrack. (The IAPBT device has a

modular design, and can be configured either as a racetrack or as a torus

[5].) The coordinates we use are shown in Fig. 2. The reference orbit is

that of a particle at r = R, z = 0. For this particle,

R = YoV/Bzo (1)

where BzO is the value of the vertical field at r R, and yo is the

matched particle energy and V = (1 - 1/y )1 /2. If we displace the particle

from this orbit, then its equations of motion are

yV dPr
e- + -= E + VB - V B
r dt r ez ze

VV r  dPe  +V B V B

r dt E z r r z

dp= Ez  +VB e - VB (2)

r 
R

Figure 2. The coordinates used in the analytic derivation are cylindrical
(r,e,z), and toroidal (p, ,e).
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where the components of the vectors V, 9, E, B, represent velocity,

momentum, electric and magnetic fields, respectively. We now proceed to

linearize these equations about the reference orbit in the paraxial

approximation [11]. For a particle at position r = R + 6r, z = 6z, the

applied fields are [9]

Bz = BzO(1 - n6r/R) + Bzs(O)

B r = -BzO naz/R + B rs()

Be B Bos(e) (3)

where n is the external field index n = -(R/Bzo)dBz/dr and subscript s

denotes terms due to the solenoidal magnets. For the moment, we assume the

beam is in a region of uniform toroidal field where B rs' Bzs can be

neglected. If we assume a Kapchinsky-Vladimirsky (KV) [11] beam equi-

librium which has an elliptical cross-section (we will show that this is

consistent later) then the self-fields at the particle can be calculated

from the static Maxwell's equations:

nob
E - 6r
r a+b

noa
E 0 a z

az -+b 6z

S_ n 0Vb6r
Bz a +

Bs  n0 Vaar
r a + b

where a, b are the radii in the r and z directions, respectively, n0 is

the beam density and superscript s denotes "self-field". Combining these

equations with the linearizations of Eqs. (2), we obtain

C-9
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2nsb 2 * B06 + n _ w 
b + b)-

6 2nsa w 26z- 6 les - 0 (5)a+ + b) YO

where the quantity ns = 2vR
2/y382ab is referred to as the self-field index

(v is Budker's parameter). For a self-consistent KV equilibrium, the radii

a, b are chosen such that

2nsb 2nsa
1 - n a +b =n- a + b (6)

To treat the effect of the magnetic cusps, it is convenient to change the

coordinate system to the toroidal coordinates shown in Fig. 2 and introduce

a vector potential As (e) which describes the solenoidal field. Equations

(5) are replaced by

B.2 2 0 , (7a)
p _ p$2 + 2pp y0ePYO

ldt [p p  + A ] = 0 (7b)

where

2 i n 2nsb) 2

Equation (7b) can be integrated to obtain

2. pA. 5 2 ( 1 1 B65L = p + LI P const. ,(8)0YO -T /-O

Since L is a constant, its value is determined by the initial conditions.

Experimentally, the beam will be generated using a cathode shielded from

magnetic fields [5], so that L = 0. Substitu. ng this into Eq. (7a), we

obtain

C-10



B2
+( ~4+ W2) = 0 .(9)

(IYO

In the limit that the cusps become Infinitely sharp, B2 is a constant overes
the particle orbit, and Eq. (9) has a stationary solution for

1 Bl s + 2 0 (10)

T _2 p" YO

This is the condition for a space-charge dominated equilibrium, i.e., one

where the emittance is negligible. To be consistent with the assumption of

a fixed equilibrium profile, we require that the "phase-advance per sole-

noid", i.e., the poloidal angle through which the particles rotate on gos'ng

through one solenoid, be small:

1Bes S
= - V

where S is the length of a solenoid. The case n - 1/2 is a special one,

since a = b, and poloidal rotation does not affect the beam profile. In

this case, Eq. (11) can be relaxed. Struckmeier and Reiser (121 have shown

that P0 < w/2 is required for envelope stability.

Physically, the equilibrium we have just constructed behaves as

follows. In a given solenoid, the beam particles rotate poloidally at the

Larmor frequency, Bes/2y.. On passing through the magnetic cusp Into the

next solenoid, the poloidal rotation changes direction. The shape of the

beam is elliptical, in general, with radii determined from Eq. (6), and has

a uniform density determined from Eq. (10). If the magnetic cusps are not

infinitely sharp, then an equilibrium can still be constructed [12], but

the radii a, b vary periodically with toroldal angle.

SC-11
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3. NEGATIVE-MASS INSTABILITY

In order to analyse the negative-mass instability, we adopt a

simplified model of the beam dynamics. We assume that the beam acts like a

rigid body in the transverse direction, so that only the transverse motion

of the beam centroid has to be calculated, rather than the transverse

motion of each beam particle. Comparisons between a rigid-beam model and

three-dimensional particle simulations for the case of the modified beta-

tron [8] have produced good agreement. The physical basis for the model

rests on the fact that when the beam minor radius is much smaller than the

drift tube minor radius, the perturbed toroidal forces are the same for all

particles in a given transverse slice of the beam, and the perturbed trans-

verse forces are linearly proportional to the transverse displacement of

each particle in the slice. In the toroidal direction, the model places no

restriction on the beam motion. The transverse motion of the beam gener-

ates perturbed dipole fields, while toroidal bunching generates perturbed

monopole fields.

To obtain the equations for the beam centroid, we start from Eqs. (2).

The field quantities which we insert into these equations are evaluated at

the center of the beam. It has been shown [8] that for high-current beams,

toroidal corrections to the continuity equation and the field equations

(i.e., terms of order d/R and higher where d is the wall radius) must be

retained in the calculation, particularly for high toroidal mode numbers.

A model which uses an exact, though cumbersome, solution to these equations

has been derived [13]. The exact model shows that the cylindrical approxi-

mation for the field equations gives reasonably good results for low toroi-

dal mode-numbers if a certain replacement is made [Eq. (30)]. Here, we

will make use of this simplification in order to dvoid the complexities of

toroidal corrections.

For low toroidal mode-numbers, the long-wavelength, low-frequency

approximation w2, t2/R2 4 vj (w, t denote the mode frequency and
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wave-number, respectively, and vi denote the transverse Laplacian) can be

used in solving the field equations. Neglecting toroidal corrections and

assuming a circular beam cross-section, the solutions for the perturbed

transverse self-fields at the perturbed beam centrold position are

no a2

AE = -- Ar

AE n0 a2

= T7* d

AB5 = nV a2r = W Ar
d

ABS n0  a (12)
z 2 2"

where A denotes perturbed quantities, and Ar, Az denote the transverse dis-

placement amplitudes of the beam centroid. These fields come from the

dipole components of AEj. and ABI. The monopole components of the trans-

verse fields do not co-ple to the centroid motion. The monopole component

of AE e does enter, however, and can be obtained using the integral form of

Faraday's Law,

Ed_= di B.dS

d d

-- AE0  1 a AE0 dp f AB'dp (13)
0~ IFT-f P at

0 0

where the superscript zero denotes the monopole conponent. The sources for

AE 0, AB are the monopole components of An and AJd, respectively. The

latter are related to the perturbed beam displacement through the con-

tinuity equation [8]:

II
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U

An = - A n0Az rn ar n0 Ae (14)az 0 r ar 0 ae0

From this and AJe = n0Rle + AnV where the dot denotes the total time

derivative, we obtain the expressions

0  a
An = -'-n 0Ae

o aAJ = t n0Ae (15)

Consistent with our use of the cylindrical approximation, we have neglected

toroidal terms in Eq. (15). Substitution into Eq. (14) yields

AE0 =1 2 (1 + 2an (1a a Ae (16)

-T a\ ae at )

The applied fields are given by Eq. [3], with 6r, 6z replaced by Ar, AZ.

We can now write down the linearized equations of motion for the beam

centroid:

,Bes AVBzs 2Ar +.=Ar + . Bes0AVV
YO YO 00

*B e.. AVeBr
A es + ___A + WIAz- A YO 'r 0

* AEe- P AB -T(17)

YO

where

and we have taken n - 1/2 to be consistent with a = b [Eq. (6)]. To solve

Eq. (17), we perform a multiple-length-scale analysis to average over the

solenoidal lenses. This involves an ordering scheme where the wavelength

of the beam mode X Is assumed to be much longer than the period of the

.1 C-14

I



alternating solenoidal fields, i.e., S/X = O(e), where e is a smallness

parameter. Consistent with this, we assume a/at, wO, wL are of order e.

In addition, we assume, as in the equilibrium equations, that p0 < 1

[Eq. (11)]. It is convenient to perform the averaging in toroidal coordi-

nates (Fig. 2), in which Eqs. (17) have the form

-2 + wP + ;Bes 2 AV cos (18a)
1) d p2 1 Bep +,.V sip(8b

P Tf 7 -YO)

+ WAr -c - 0 (18c)

where = RAe, s = Re, and C = 1/4(n a2 )(1 + 21n d/a)/y . All quantities

are expanded in powers of e in the following manner,

p(s,t) = Po(sos 1 ,t) + SP1 (so,slt) + ... (19a)

(s,t) = *o(soslt) + 0 1 (soslt) + ... (19b)

C(St) - C0(SoS 1,t) + SCl(sOslt) + ... (19c)

where so, si denote the short and long length-scales, respectively. The

essence of the multiple-scale method is that s and s are treated as inde-

pendent variables. The total time derivative d/dt is expanded as

V(a/aso) + e(ddtj) where d/dt, = a/at + Va/as1 . To zero order in c,

Eqs. (18) become

(V2  aO
as0  o -oo
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I 
2V 10 - = l ! I0

0 L as 0-
V2 2  (20)

- oT 0 - as0  - 0
as 0  S 0 0

From these, we conclude that pO 0, 0 do not depend on sO . Using this
information, we obtain to order e,

V2 -Y = 0
as

0

a [P2(V aa) + 1Bes>

(V2 - C) 8 2 -o (21)
as 0

These equations imply that P1, ;1 also do not depend on s,. For we

obtain

S/F(ts) d ,s ) ()

1* at J YO ~ts)(2

where F(t,si), G(t,s1 ) are arbitrary constants. The secular dependence on

so can be removed by choosing

Fap 0 - (23)

This choice implies that a#1/3so depends only on so. Proceeding to order
C2, we obtain

C-16
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2 2 2+2 / 2 POa/+V4 1 a~1) B e

at a ts7 soav 2  ap - - o (3!+ [o o T v-.--- o -

-Y PO cos 00 + t cos 00 (24a)

V _2 a 2 p  o2T = 20 t W0P0 Cos 10 sin ,0 (24b)
72 (toat ~ at 0as0 oa/ 

0 ~

V 2a2 2 ~ CO co too -O O VP0 sin ao~-
as0  a tT 0,'-

[a, 2  a2 a=0+as 1  ;0] = J (24c)

We now average these equations over one period of the magnetic lenses.

Subtracting the averaged equations for Eqs. (24b) and (24c) from the

unaveraged ones, we obtain

a 2  / a .2 \ (2 5a )
as 0  as

a a2Ka(2%2) (25b)
ass

where the brackets <> denote the average. Solving these equations, and
removing secularitles in the usual way, we find a,2/as- a 2/as 0

From Eq. (24b), we note that if we impose the initial conditions 00 0,

a*0/at - 0 at t a 0, then this equation has the unique solution 00 (t) = 0.

By imposing these initial conditions, and thereby restricting the class of

initial conditions for which the analysis is valid, we can set 0= 0 in

Eqs. (24). From Eqs. (22) and (24a), we then obtain
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2 + a2  P +1Bes \2 + = Y2  ('tl0 at (26)

at + Y 0 0 \0o a/
as, at

By subtracting this equation from its average, it is again straightforward

to show that 0p 2/3S2> = 0 (but a p2/3S- * 0). We thereby obtain the

equations for the averaged beam centroid motion:

2 B2 /ap 1o es 2_
- (+ _ = -- at 0)(27a)=t 'I \ / PoI Y2W W o+_t

32 Co apo (,2 2
+ Wo -c a ) o z o (27b)

a at0  (a2

0= 0 (27c)

Note that Eqs. (27a) and (27b) have the form of the equations one would

obtain if no solenoidal magnetic lenses were present. Thus, to the order

we have solved the original equations, the net effect of the solenoidal

lenses is to increase the transverse focusing on the beam by an amount

proportional to <B2s/Y 0 , i.e.,

B2
r + es (28)

To obtain-a dispersion relation from Eqs. (27), we assume that the

perturbed quantities vary as exp(lte - lwt). In Eq. (27b), we obtain the

factor L2/R2 - W2. However, as shown in Ref. [13], when toroidal correc-

tions to the field equations and the continuity Equation are kept, we

instead obtain the factor a 1 2/R2 - Q2 W2 , where a and a2 are frequency-

and mode-number-dependent expressions approximately equal to unity. In

general, we can approximate w - tw in evaluating this factor,

UY
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Small differences between a1 and %2 can strongly affect the magnitude and

even the sign of a1 - a2V 2. These effects become increasingly evident as

the mode number X increases. However, the averaging procedure we have used

is only valid for low mode numbers, and for our purposes, it will be suffi-

cient to set a1 
=  

2 = 1 in Eq. (29)

1 2 2 1 t2 (30)

R 0o

This approximation was made on heuristic grounds by Landau and Neil [7].

The main error introduced is in the asymptotic fall-off of growth rate with

Yo [13]. The important point here is that much larger errors are intro-

duced by keeping the unmodified factor £2/R2 - w in the dispersion rela-

tion. Fictitious cutoffs in the growth rate as a function of energy and

current are predicted [14].

Using Eq. (28), the dispersion relation obtained is:

t 01= +2c l2~ (31)

where ( = wo*- .
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4. SOLUTIONS TO THE DISPERSION RELATION

2By inspection of Eq. (31), we see that there are resonances at a = 0

and Q 2 = 1, corresponding to the longitudinal and transverse modes of

oscillation of the beam. These modes are coupled through the negative-mass

effect. For the low 1-numbers we are considering, the coupling is non-

resonant, i.e., the resonances do not overlap. Thus, for the mode near

= 0, we can set 2 si., to get

/ 0 
~2 (2  1 _O = - (32)

F~ -~ 0

R IQ

When the right-hand side is negative, we obtain the negative-mass insta-

bility. For Bes = 0, Eq. (32) becomes the expression of Landau and Neil

[7] for a monoenergetic beam in a conventional betatron. The condition for

instability is

<B 2 1/2
YO >  + 1 es 0 t (33)

Thus, the strong-focusing effect of the solenoids introduces a finite

negative-mass transition energy y tr below which the beam is stable. This

contrasts with the conventional betatron which is unstable at all energies.2 2
Further, we note from Eq. (32) that when <Bes/Y >  1/2, the growth rate

scales as 1/IBesI, so that the solenoidal focusing strongly suppresses

growth of the instability.

As the beam is accelerated, yo increases. We see from Eq. (28) that

the effect of the solenoldal focusing rapidly decreases unless Bas is

increased also. By ramping Bes in synchronism with yo, the suppression of

growth rates relative to the conventional betatron is maintained. An addi-

tional benefit is that the crossing of single-particle resonances is

avoided. The obvious drawback is that additional energy is required to

drive the solenoids.
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In Fig. 3, we show growth rates obtained from Eq. (29) for parameters

typical of the IAPBT betatron (Table 1). The curves show the contrast

between a case where the solenoidal field is kept fixed at its injection

value, and one where it is ramped linearly with yo. Note that the growth

rates in both cases are substantial for a device an acceleration time of

several tens of microseconds.

TABLE 1. SOLENOIDAL LENS BETATRON PARAMETERS

Torus Major Radius 1 m

Torus Minor Radius 4.5 cm

Beam Major Radius I m

Beam Minor Radius (at injection) -2 cm

Injected Beam Energy 300 kV

Injected Beam Current -100 A

Solenoidal Field Amplitude (at injection) -220 Gauss

Number of Solenoids 30

There is a qualitative difference between Eq. (31) and the the corre-

sponding dispersion relation for the modified betatron [1, 9], which has a

uniform toroidal field. In Eq. (31) only the radial and toroidal modes of

the beam are coupled (cf. Fig. 7). In the modified betatron, the radial

beam motion is-coupled to the vertical motion (z-direction in Fig. 2) as

well as to the toroidal motion.
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* Figure 3. Growth rates of the negative-mass instability obtained from
Eq. (31) for the parameters in Table 1.
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5. STABILIZATION DUE TO FINITE BEAM RADIUS

In the derivation of Eq. (31), we assumed that all particles rotate

about the major axis of the torus at the same frequency, namely, t = V/R.

For a finite radius beam, however, there is a spread in path lengths around

the torus. Thus, even if V = c for all particles, there is a spread in

rotation frequencies. Taking a uniform density equilibrium of the type

discussed in Sec. I, with circular cross-section and small phase advance

per solenoid (Eq. 11), it is straightforward to show that the distribution

function for the particle rotation frequencies is

f(5) = A [a2w/R 2 
- - 2] (34)

where A is a normalization constant and 5 is the particle rotation fre-

quency. The width of the distribution function is aw0/R. This contrasts

with the conventional and modified betatrons, where the betatron oscilla-

tions of the particles result in a width which is only of order (a/R) 2 for

a monoenergetic beam (see Fig. 4). For these devices, it is generally

(a) 2a (b)

2a

Figure 4. An equilibrium in which there is little transverse oscillation
of the particles (as in a) has a much greater frequency spread
than an equilibrium in which the radius is determined by the
amplitude of betatron oscillations (as in b).
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necessary to have an energy spread on the beam to obtain a significant

frequency spread [7, 9].

In order to derive a dispersion relation taking frequency spread into

account, a kinetic treatment is necessary. Rather than redoing the

analysis of Sec. III in the framework of the Vlasov equation, we will make

a plausibility argument for adapting the kinetic dispersion relation for

the conventional betatron derived by Landau and Neil [7]. As observed in

Sec. IV, Eq. (31) can be obtained from the cold beam result of Ref. [7]

when the replacement in Eq. (28) is made. The longitudinal motion of the

particles is affected by the solenoidal field only to order (u0a/S)
2 ' 1.

Therefore, we expect the influence of the solenoids on the resonance at
a2 = 0, which is associated with the instability, to be minimal. In addi-

tion, as noted at the beginning of Sec. 4, there is no resonant coupling to

the transverse beam modes for low t-numbers. On this basis, we modify the

kinetic equation of Ref. [7] according to Eq. (28), we obtain the disper-

sion relation:

1 = - + 2tn Lf (35)
4 2 a)]~~7 Jf

YOap + Up

where

2oR2 -
p = + p is the canonical angular momentum, and f is normalized such

that ffdp = no. The relation between p and 6 is w0 - kp. Converting

Eq. (35) into an integral over 5, and inserting the distribution function

in Eq. (34), we obtain the dispersion relation

I = G 1 + (36)

(a2 _ (taw0/R)2)I/ j
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where

Equation (36) can be made analytic in the complex w plane by introducing

the branch cut shown in Fig. 5. We find that for I < G < -, the beam is

unstable with growth rate

r zw 0  G- 1 (37)

The zero-frequency-spread growth rate r0 in Eq. (32) can be recovered by

letting a + 0. As G approaches I from above, the roots approach the branch

cut, as shown in Fig. 5. For G < 1, the negative-mass mode disappears, and

the beam is stable. The stability criterion can be rewritten

r < tw(38)

This criterion has a physical interpretation in terms of the rotation

frequency spread of the particles. Consider two particles, one at r - R,

and one at r - R ± a, which are initially at the sam toroidal angle. Then

at marginal stability, these particles will become separated by I/t radians

in a time I/rO . This smearing effect prevents cluming of the beam.

We emphasize that the stability criterion just derived is only valid

for a cold, space-charge dominated equilibrium of the type described in

Sec. It. To apply Eq. (38) to a hot beam, one must calculate an effective

radius which excludes the contribution of transverse betatron oscillations

to the radius. In the extreme case where the finite beam radius is com-

pletely due to betatron oscillations, as in Fig. 4b, the frequency spread

is negligible for typical parameters.
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Figure 5. Rranch cut in the complex w - ta0 plane to make the dispersion
relation, Eq. (31), analytic. The arrows show the movement of
the roots as G * I from above.
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1plying Eq. (38) to the cases in Fig. 3, we find that a beam radius

of 1.2 cm is sufficient to stabilize the peak growth rate. As the beam is

accelerated, its radius shrinks, thereby decreasing the width of the

frequency distribution. From Eq. (10) we find

2 2 1
2 8vR2 12+<Bes/0>)2 = M + Qes/ >(39)

-3/2 2 2

so that the radius shrinks as y 0 2 if <Bes/yo > is held fixed. If Bes is

held fixed, then the scaling is more complicated at low energy, but quickly

goes over to a y3/2 scaling as yo increases. From Eq. (32), we see that

the growth rate r0 also shrinks as y 0 2 . Therefore, if the beam is stable

just above the transition energy, then it will tend to remain so as the

acceleration proceeds. In addition, both sides of Eq. (38) scale linearly

with L, so that if one mode is stable then all modes are. As we shall see

in Sec. 6.1, this scaling breaks down for large L-numbers.
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6. COMPARISON WITH NUMERICAL SIMULATIONS

In order to check the analytic theory, and to study the nonlinear

effects of the instability, we carried out a limited number of simulations

using the three-dimensional particle-in-cell code IVORY. IVORY has been

used successfully to model the negative-mass instability in the modified

betatron [8, 13]. The code is fully electromagnetic and advances the com-

plete Lorentz force equations for the particles. A two-dimensional grid is

used to represent the transverse plane of the beam, while fields in the

toroidal direction are represented by a Fourier sum. This allows us to

compare predictions for individual t-numbers directly with theory. For

economy, we generally keep <3 toroidal modes in the simulations. To model

the solenoidal lens betatron, a sinusoidally varying toroidal field is
2 2 2 2

used. We use Eq. (10), with B s/y0 is replaced by <Bes/yO> , to obtain

suitable equilibria to initialize the simulations. We find that small-

amplitude envelope oscillations are excited due to the fact that the cusps

are not infinitely sharp [15].

6.1 IAPBT PARAMETERS

Three simulations were performed for the for the parameters in

Table 1. We assumed 30 solenoids around the torus since 10 of the 40 sole-

noids in the actual device are on straight sections which we do not simu-

late here. First, we looked at the L - 5 mode at y. - 3. The beam radius

was chosen to be 1.75 cm, for which the matched amplitude of the solenoidal

field is 134 gauss. The simulation was run for 230 ns, during which no

measurable growth was observed. The theoretically predicted growth rate is

22.8 ps"1, which would have produced about 5.3 e-foldings in 230 ns. (This

growth rate is higher than those shown in Fig. 3 because of the lower

solenoidal field.) We attribute the beam stability to the spread in

circulation frequencies. The right-hand side of Eq. (38) is 26.2 us-,

which Is marginally sufficient for stability.
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The averaging procedure of Sec. 4 breaks down as the mode-number L

approaches the mode-number Ls associated with the solenoidal field. For

our case, Ls a 15. Since no averaging is used in the simulation code,

however, such modes can be looked at numerically. For the same parameters

as the I = 5 simulation above, we performed a simulation of the - LS - 15
mode. We observed a strong instability, with a growth rate of 66 us41, as

shown in Fig. 6. A particle plot from the nonlinear stage of the Insta-

bility (Fig. 7) shows typical negative-mass instability behavior, i.e.,

radial kinking accompanied by toroidal clumping. The instability has

almost saturated at the point reached in Fig. 7, but 1/6 of the current has

been scraped off onto the wall. If the wall radius hai been larger, the

instability might have saturated without current loss.

If we naively apply the analytic dispersion relation to the t 15

mode, we obtain a growth rate of 66 us"1 , the same as the numerical result.

However, Eq. (38) predicts stability due to frequency spread. Thus, it

appears that the zero-frequency-spread growth rate for t * 15 Is signifi-

cantly larger than that predicted by analytic theory. On the other hand,

10 1111

16-2
66 e-foldings

z
A 104

'0-$

SO SO ~IN is@

TIME (no)

Figure 6. Energ history of the I a 15 mode in a simulation of a 100 A.
YO 3 beam, showing the linear growth and nonlinear
saturation.
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the analytic prediction of a negative-mass transition energy appears to be

valid even for I = 15. We simulated this mode for yo = 1.6, which corre-

sponds to the injection energy of the IAPBT betatron, and observe no insta-

bility. The analytic theory predicts stability up to at least yo = 2.2

(see Fig. 3).

6.2 HIGH-CURRENT BEAM STABILITY

If experiments at 100 A are successful, then higher-current experi-

ments will be undertaken. We have performed three simulations of 10 kA

beams to investigate beam stability at high current. We assumed 20 sole-

noids around a torus with a 1 m major radius, and simulated the mode I = 2

is A 20 (this mode was chosen for reasons of computational economy). In

Fig. 8, we compare the simulation results with (a) growth rates obtained

for a conventional betatron (no toroidal field) and (b) growth rates

obtained by using the averaged approximation for the solenoidal lenses.

Because of the high E-number, the curves in Fig. 8 were obtained by insert-

ing Eq. (28) into the exact analytic dispersion relation of Ref. (13)

rather than using Eq. (31). In doing the simulations, we set the beam

radius to 2 cm in order to have good resolution of t e beam on the simula-

tion mesh. This means that the solenoidal field necessary to get a matched

beam decreases as the beam energy increases (see Eq. 39). Thus the simu-

lation growth rates shown in Fig. 8 do not represent those experienced by

an accelerating beam where the solenoidal field is kept constant, or

increased.

As in the 100 A simulations, we find that the hlgh-L growth rates are

anomalously large when frequency spread effects are taken into account.

Nevertheless, the simulations for yo - 7, and yo - 12 both saturate with no

loss of current. Plots from the nonlinear stage of these simulations are

shown in Fig. 9. There is considerable churning of the beam after these

plots were taken, and this stage of the instability is probably not well

modeled with a few Fourier modes. The simulation at YO 17 was not run

long enough to see saturation.

4
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Figure 8. Growth rates of the i a ZO negative-mass mode on a 10 kA beam in
a solenoidal-lens betatron, plotted versus beam energy. Growth
rates are compared to those for a conventional betatron (dashed
line) and those obtained using the averag*d-focusing approxima-
tion (solid line).
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Figure 9. Particle plots (r-z, r-S) taken during tihe nonlinear saturation
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7. SUMMARY AND DISCUSSION

We have presented an analytic model for the negative-mass instability

in the solenoidal-lens betatron. Restricting the analysis to low toroidal

mode-numbers, the effect of the solenoidal lenses are averaged over using a

multiple-length-scale method. The equations obtained are those of the con-

ventional negative-mass dispersion relation with a modified transverse

focusing force. The additional transverse focusing introduces a finite

negative-mass transition energy below which the beam is stable. Above this

energy, growth rates are suppressed relative to those of the conventional

betatron.

The averaged transverse focusing term is used to obtain a kinetic

dispersion relation for the solenoidal leas betatron. We find that for a

space-charge-dominated equilibrium, it is relatively easy to stabilize the

instability with the natural frequency spread due to finite beam radius.

This contrasts with other types of betatrons where an energy spread is

needed to produce a significant frequency spread.

Results of three-dimensional PIC code simulations of the IAPBT beta-

tron are in agreement with the predicted stability for low i-numbers where

the averaging procedure is applicable. For a mode-number equal to the

mode-number of the solenoidal lenses, on the other hand, we find that the

growth rate is anomalously large. In the nonlinear regime, the instability

exhibits a classical wave-breaking saturation mechanism leading to some

loss of current.

The prediction of a finite negative-mass transition energy is borne

out by the simulation results even for large i-numbers. Thus, the IAPBT

betatron is predicted to be stable at its injection energy even In the

absence of particle frequency spread.
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High-current simulations at high mode-number show large growth rates

comparable to what one would obtain in the absence of any toroidal field

(i.e., a conventional betatron). However, no current loss is observed

during the nonlinear saturation of the instability.

I
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